TECHNOLOGY GUIDE ON BLUE SWIMMING CRAB (Portunus pelagicus)

Hatchery Technology

- The blue-swimming crab (*Portunus pelagicus*) is a significant commercial species in the Philippines, ranking as the 4th major fishery export product.
- However, increased demand has led to overfishing and declining wild blue swimming crab populations.
- To address this issue and enhance sustainable production, BFAR Region 7 conducted recent experiments to develop a technology guide for farming this valuable commodity.
- This guide addresses the limited knowledge of their reproductive biology, assessment methods, optimal water conditions, and feeding frequency, aiming to support the responsible cultivation of blue-swimming crabs.

BROODSTOCK PREPARATION

	1.	Source live berried crab in the nearby landing areas or wet market.
	2.	Select a 300-500g berried crab, preferably with black/dark green coloured eggs.
	3.	Disinfect broodstock using 3ml formalin in 25 liters of seawater and soak for 30 minutes.
-	4.	Keep the crabs in a 50L tank of filtered seawater with salinity between 27-35 ppt.
	5.	Maintain a temperature that should not fall <28°C.
		Lise only filtered segwater using a 5 micron filter bag during the entire rearing
	6.	following a 50% daily water change.
		Disinfect seawater using 10g of chlorine and 25g of sodium thiosulfate per top of
	7.	filtered seawater to avoid bacterial and other pathogenic infections

SPAWNING AND LARVAL REARING

SPAWNING

Allow to naturally spawn in the tanks within **24-48 hours**. After spawning, transfer the zoea to the 10 tons capacity tanks with a stocking density of **250,000/8 tons water**.

ZOEA (Day 0-10)

R

V

L

R E

A

R

N

- Daily water change at 30-40% every morning.
- Siphon out excess feeds, dead larvae, and other deposits in the tank's bottom.

Feed daily

Vigorous aeration is required in zoea stages

INSTAR (Day 15-21)

- Repeat the step in Zoea Stage
- Feed daily

r ccu daily

MEGALOPA (Day 11-14)

- Placed a black mesh nets (20µ) in the rearing tank as substrate
- Repeat the steps in Zoea Stage
- Feed daily
 - Reduce aeration

CRABLET (Day 22-35

- Change the water daily at 80%.
- Feed daily

WATER PARAMETERS

Salinity	28-35ppt	Ammonia	0.10ppm
Temp	29-32°C	Nitrite	<0.05ppm
рН	7.0-8.5	Sulfide	<0.01ppm
D.O	5-8mg/L	Phosphate	<0.01ppm

FEEDING

STAGES	FOOD	FREQUENCY /DAY
Zoea (day 1-4)	P. japonicus (3.18g/8 tons tank) Rotifer (17 individuals/ml) Nannochloropsis (120,000cells/ml)	3x 2x 2x
Zoea (day 5-9)	P. japonicus (3.18g/8 tons tank) Rotifer (17 individuals/ml) Nannochloropsis (120,000cells/ml) Artemia (4 individual/ml)	3x 2x once 2x
Megalopa (day 10-14)	Brine pellets(14.78/tank (8 tons) Artemia (5-7 individual/ml)	3x 2x
Instar (day 15-21)	Trash Fish 285g/tank (8 tons) Artemia (5-7 individual/ml)	Once
Crablets (day 22-35)	Trash Fish 285g/tank (8 tons) Artemia (5-7 individual/ml)	Once

HARVESTING

- ✤ The harvestable size is 1.5-2.0cm.
- ✤ Upon harvest, water in the larval rearing tank is reduced to 25% of its total capacity.
- Collect crablets using nets or through the ball valve, then transfer them to a tank or a container with known water volume.

ITEMS	COST
 A. MANPOWER (Monthly) Head Technician Aide 1 Aide 2 Subtotal 	14,500 12,560 11,560 38,620
 B. CHEMICALS WATER DISINFECTION Sodium Thiosulfate (15kg@200/kg) Chlorine (10kg @120/kg) B. Subtotal 	3,000 1,200 4,200
 C. FEED (live) Artemia cyst (6cans @3,500/can) Trash Fish (40kg @120/kg) Subtotal 	21,000 4,800 25,800
 D. FEED (artificial) Penaeus japonicus (1kg @120/kg) 	950
 E. BERRIED CRAB (Broodstock) Live berried crabs (bidhan) (3-4 pcs @ 300/kg) 	600
F. OTHER COSTSElectricity (1 month operation)	15,000
G. PETTY CASHReserved cash for other items	10,200
GRAND TOTAL	95,370

Duration: 21-35 days Average Produced: 55,000 crablets Survival rate: 15% Est. Cost/crablet: Php1.74

**NOTE: Utilization of existing hatchery facilities/structure is advised with a minor renovation or structural preparation estimated cost of Php250,000

Catch per Unit Effort (CPUE)

Monthly trend of mean CPUE (kg/day) of BSC gear in Danajon Bank from Jun 2019 to Sep 2020.

Monthly trend of mean CPUE (kg/day) of BSC gear in Danajon Bank from May 2021 to April 2022.

SCAN ME!